nanopyx.methods.esrrf.eSRRF_workflow
1from ..workflow import Workflow 2from ...core.transform import eSRRF_ST 3import numpy as np 4 5# TODO check correlations and error map 6 7 8def eSRRF( 9 image, 10 magnification: int = 5, 11 radius: float = 1.5, 12 sensitivity: float = 1, 13 doIntensityWeighting: bool = True, 14 _force_run_type=None, 15): 16 """ 17 Perform eSRRF analysis on an image. 18 19 Args: 20 image (numpy.ndarray): The input image for eSRRF analysis. 21 magnification (int, optional): Magnification factor (default is 5). 22 radius (float, optional): Radius parameter for eSRRF analysis (default is 1.5). 23 sensitivity (float, optional): Sensitivity parameter for eSRRF analysis (default is 1). 24 doIntensityWeighting (bool, optional): Enable intensity weighting (default is True). 25 _force_run_type (str, optional): Force a specific run type for the analysis (default is None). 26 27 Returns: 28 numpy.ndarray: The result of eSRRF analysis, typically representing the localizations. 29 30 Example: 31 result = eSRRF(image, magnification=5, radius=1.5, sensitivity=1, doIntensityWeighting=True) 32 33 Note: 34 - eSRRF (enhanced Super-Resolution Radial Fluctuations) is a method for super-resolution localization microscopy. 35 - This function sets up a workflow to perform eSRRF analysis on the input image. 36 - The workflow includes eSRRF_ST as a step and can be customized with various parameters. 37 - The result is typically a numpy array representing the localized points. 38 39 See Also: 40 - eSRRF_ST: The eSRRF step that performs the actual analysis. 41 - Workflow: The class used to define and run analysis workflows. 42 """ 43 44 _eSRRF = Workflow( 45 ( 46 eSRRF_ST(verbose=False), 47 (image,), 48 { 49 "magnification": magnification, 50 "radius": radius, 51 "sensitivity": sensitivity, 52 "doIntensityWeighting": doIntensityWeighting, 53 }, 54 ) 55 ) 56 57 return _eSRRF.calculate(_force_run_type=_force_run_type)
9def eSRRF( 10 image, 11 magnification: int = 5, 12 radius: float = 1.5, 13 sensitivity: float = 1, 14 doIntensityWeighting: bool = True, 15 _force_run_type=None, 16): 17 """ 18 Perform eSRRF analysis on an image. 19 20 Args: 21 image (numpy.ndarray): The input image for eSRRF analysis. 22 magnification (int, optional): Magnification factor (default is 5). 23 radius (float, optional): Radius parameter for eSRRF analysis (default is 1.5). 24 sensitivity (float, optional): Sensitivity parameter for eSRRF analysis (default is 1). 25 doIntensityWeighting (bool, optional): Enable intensity weighting (default is True). 26 _force_run_type (str, optional): Force a specific run type for the analysis (default is None). 27 28 Returns: 29 numpy.ndarray: The result of eSRRF analysis, typically representing the localizations. 30 31 Example: 32 result = eSRRF(image, magnification=5, radius=1.5, sensitivity=1, doIntensityWeighting=True) 33 34 Note: 35 - eSRRF (enhanced Super-Resolution Radial Fluctuations) is a method for super-resolution localization microscopy. 36 - This function sets up a workflow to perform eSRRF analysis on the input image. 37 - The workflow includes eSRRF_ST as a step and can be customized with various parameters. 38 - The result is typically a numpy array representing the localized points. 39 40 See Also: 41 - eSRRF_ST: The eSRRF step that performs the actual analysis. 42 - Workflow: The class used to define and run analysis workflows. 43 """ 44 45 _eSRRF = Workflow( 46 ( 47 eSRRF_ST(verbose=False), 48 (image,), 49 { 50 "magnification": magnification, 51 "radius": radius, 52 "sensitivity": sensitivity, 53 "doIntensityWeighting": doIntensityWeighting, 54 }, 55 ) 56 ) 57 58 return _eSRRF.calculate(_force_run_type=_force_run_type)
Perform eSRRF analysis on an image.
Args: image (numpy.ndarray): The input image for eSRRF analysis. magnification (int, optional): Magnification factor (default is 5). radius (float, optional): Radius parameter for eSRRF analysis (default is 1.5). sensitivity (float, optional): Sensitivity parameter for eSRRF analysis (default is 1). doIntensityWeighting (bool, optional): Enable intensity weighting (default is True). _force_run_type (str, optional): Force a specific run type for the analysis (default is None).
Returns: numpy.ndarray: The result of eSRRF analysis, typically representing the localizations.
Example: result = eSRRF(image, magnification=5, radius=1.5, sensitivity=1, doIntensityWeighting=True)
Note: - eSRRF (enhanced Super-Resolution Radial Fluctuations) is a method for super-resolution localization microscopy. - This function sets up a workflow to perform eSRRF analysis on the input image. - The workflow includes eSRRF_ST as a step and can be customized with various parameters. - The result is typically a numpy array representing the localized points.
See Also: - eSRRF_ST: The eSRRF step that performs the actual analysis. - Workflow: The class used to define and run analysis workflows.