nanopyx.methods.drift_alignment
1from .corrector import DriftCorrector 2from .estimator import DriftEstimator 3from ...core.utils.timeit import timeit 4 5 6def estimate_drift_alignment(image_array, save_as_npy=True, save_drift_table_path=None, roi=None, **kwargs): 7 """ 8 Function use to estimate the drift in a microscopy image. 9 :param image_array: numpy array with shape (z, y, x) 10 :param save_as_npy (optional): bool, whether to save as npy (if true) or csv (if false) 11 :param save_drift_table_path (optional): str, path to save drift table 12 :param roi (optional): in case of use should have shape (x0, y0, x1, y1) 13 :param kwargs: additional keyword arguments 14 :return: aligned image as numpy array 15 """ 16 estimator = DriftEstimator() 17 corrected_img = estimator.estimate(image_array, roi=roi, **kwargs) 18 print(save_drift_table_path) 19 estimator.save_drift_table(save_as_npy=save_as_npy, path=save_drift_table_path) 20 if corrected_img is not None: 21 return corrected_img 22 else: 23 pass 24 25 26def apply_drift_alignment(image_array, path=None, drift_table=None): 27 """ 28 Function used to correct the drift in a microscopy image given a previously calculated drift table. 29 :param image_array: numpy array with shape (z, y, x); image to be corrected 30 :param path (optional): str; path to previously saved 31 :param drift_table (optional): estimator table object; object containing previously calculated drift table 32 :return: aligned image as numpy array 33 """ 34 corrector = DriftCorrector() 35 if drift_table is None: 36 corrector.load_estimator_table(path=path) 37 else: 38 corrector.estimator_table = drift_table 39 corrected_img = corrector.apply_correction(image_array) 40 return corrected_img
def
estimate_drift_alignment( image_array, save_as_npy=True, save_drift_table_path=None, roi=None, **kwargs):
7def estimate_drift_alignment(image_array, save_as_npy=True, save_drift_table_path=None, roi=None, **kwargs): 8 """ 9 Function use to estimate the drift in a microscopy image. 10 :param image_array: numpy array with shape (z, y, x) 11 :param save_as_npy (optional): bool, whether to save as npy (if true) or csv (if false) 12 :param save_drift_table_path (optional): str, path to save drift table 13 :param roi (optional): in case of use should have shape (x0, y0, x1, y1) 14 :param kwargs: additional keyword arguments 15 :return: aligned image as numpy array 16 """ 17 estimator = DriftEstimator() 18 corrected_img = estimator.estimate(image_array, roi=roi, **kwargs) 19 print(save_drift_table_path) 20 estimator.save_drift_table(save_as_npy=save_as_npy, path=save_drift_table_path) 21 if corrected_img is not None: 22 return corrected_img 23 else: 24 pass
Function use to estimate the drift in a microscopy image.
Parameters
- image_array: numpy array with shape (z, y, x)
- save_as_npy (optional): bool, whether to save as npy (if true) or csv (if false)
- save_drift_table_path (optional): str, path to save drift table
- roi (optional): in case of use should have shape (x0, y0, x1, y1)
- kwargs: additional keyword arguments
Returns
aligned image as numpy array
def
apply_drift_alignment(image_array, path=None, drift_table=None):
27def apply_drift_alignment(image_array, path=None, drift_table=None): 28 """ 29 Function used to correct the drift in a microscopy image given a previously calculated drift table. 30 :param image_array: numpy array with shape (z, y, x); image to be corrected 31 :param path (optional): str; path to previously saved 32 :param drift_table (optional): estimator table object; object containing previously calculated drift table 33 :return: aligned image as numpy array 34 """ 35 corrector = DriftCorrector() 36 if drift_table is None: 37 corrector.load_estimator_table(path=path) 38 else: 39 corrector.estimator_table = drift_table 40 corrected_img = corrector.apply_correction(image_array) 41 return corrected_img
Function used to correct the drift in a microscopy image given a previously calculated drift table.
Parameters
- image_array: numpy array with shape (z, y, x); image to be corrected
- path (optional): str; path to previously saved
- drift_table (optional): estimator table object; object containing previously calculated drift table
Returns
aligned image as numpy array